

CORRELATION BETWEEN BIOTIC FACTORS AND ABIOTIC FACTORS - FOCUSED ON THE CASE STREAMS IN GYEONGGI DISTRICT, KOREA-

November 4, 2008

Chang Wan KIM, Ph. D and Hyea-Ju KIM, Ph. D

River and Coast Research Division Korea Institute of Construction Technology

Contents

- 1. Introduction
- 2. Research Procedure
- 3. Results
- 4. Conclusion

1. INTODUCTION

Correlation between biotic and abiotic factors

- Classification of stream typology
- ✓ Evaluation of ecological stream status
- LfU (Landesanstalt f
 ür Umweltschutz) Baden-W
 ürttemberg (1998) (State Institute for Environment Protection)
 - ✓ Classification of 'silicates stream' and 'carbonate stream'

LfU Baden-Württemberg (2000)

- Classification of stream type
- AQEM (2001) European Water Project (The Development and Testing of an Integrated Assessment System for the Ecological Quality of Streams and Rivers throughout Europe using Benthic Macroinvertebrates)
 - Determination of representative benthic macroinvertebrates by stream types
 - Development of integrated method for assessing streams using benthic macro-invertebrates

2. RESEARCH PROCEDURE

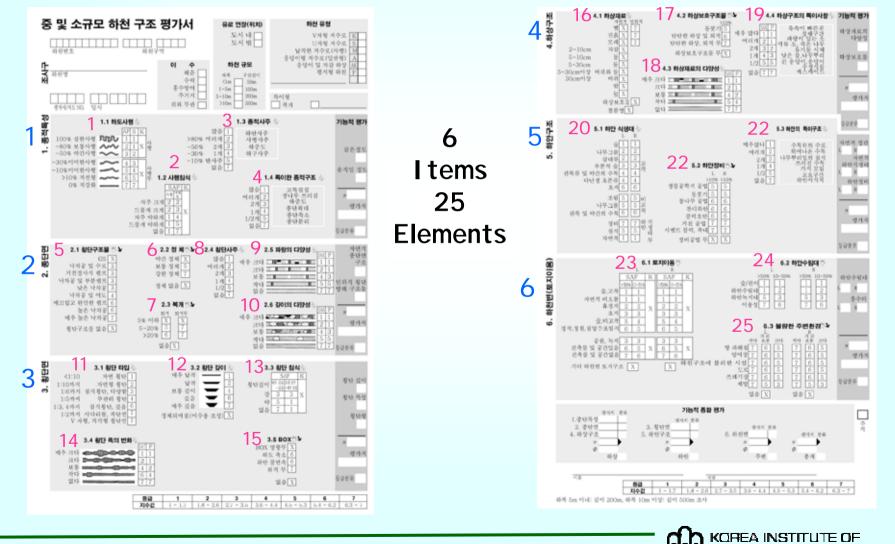
- Survey of River Structure
 - ✓ Survey sheet
 - ✓ Stream typology
 - ✓ Structural quality classes
 - Nine elements dependent on stream typology

Survey for Biotic Factors and Water Quality Items

- ✓ Vegetation
- ✓ Benthic macro-invertebrates
- ✓ Water quality items

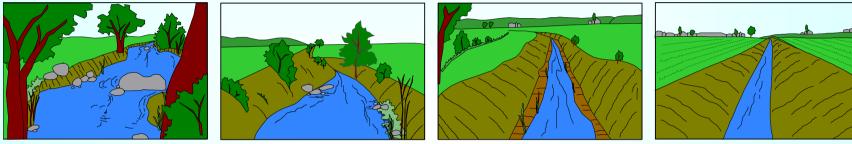
Correlation Analysis

- ✓ RDA (Redundancy Analysis)
- ✓ CCA (Canonical Correspondence Analysis)


 ∞

CONSTRUCTION TECHNOLOGY

2. RESEARCH PROCEDURE


Survey Sheet for Physical River Structure

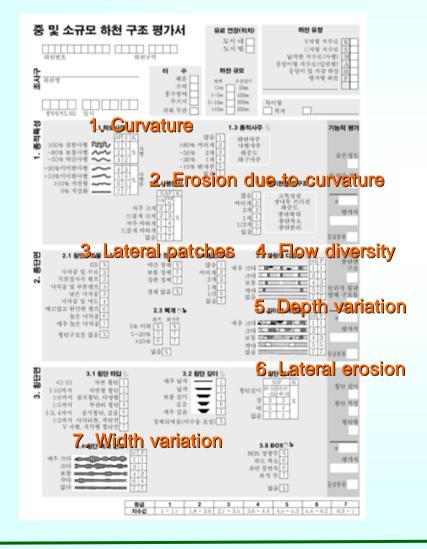
2. RESEARCH PROCEDURE

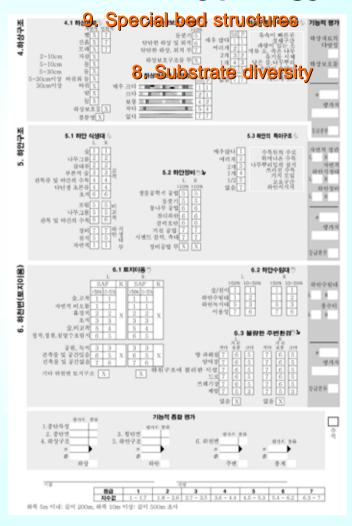
Structural Quality Classes (LAWA, 2000)

Natural State-1, 2 Natural State-3

Natural State-4

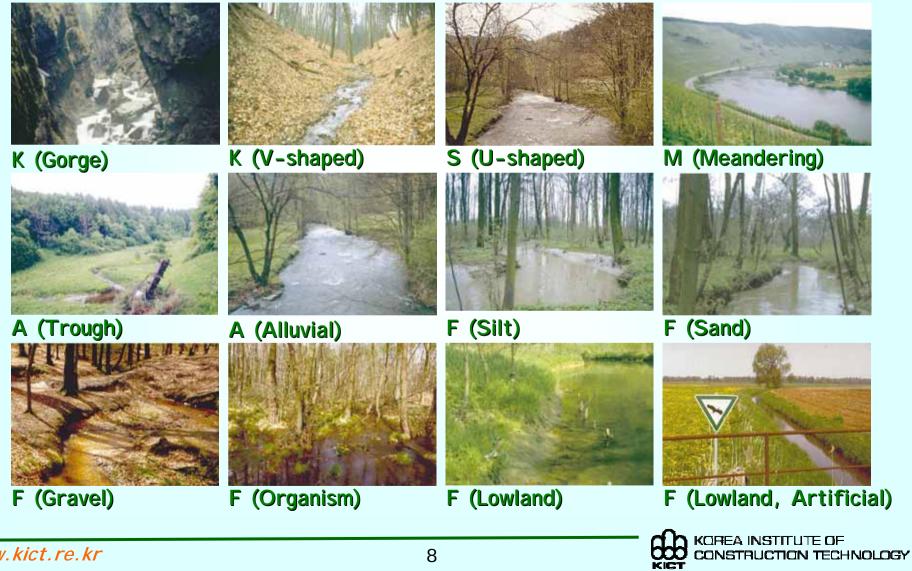
Natural State-5


Natural State-6, 7


Class	State	Range	EU-WFG Ecological Condition
1	Unchanged	1.0-1.7	Very Good
2	Slightly Changed	1.8-2.6	very Good
3	Moderately Changed	2.7-3.5	Good
4	Distinctly Changed	3.6-4.4	Fair
5	Obviously Changed	4.5-5.3	Poor
6	Strongly Changed	5.4-6.2	Vory Poor
7	Completely Changed	6.3-7.0	Very Poor

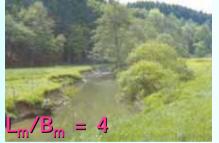
2. RESEARCH PROCEDURE

Nine Elements Dependent on Stream Typology



2. RESEARCH PROCEDURE

♦ 0. Stream Typology (LAWA, 2000)


2. RESEARCH PROCEDURE

♦ 1. Curvature of channel

Severe, 60-90 °

Moderate, 20°

Stretched

Very Strong, 30-60 °

Weak, 30-60 °

Straight (Artificial)

Strong, 10-40 °

stream	n typ	pology
A , F	S	М, К
_		
1	1	
2	1	×
3	2	
4	3	
5	4	
6	5	×
7	7	
	strean A, F 1 2 3 4 5	2 1 3 2 4 3 5 4

www.kict.re.kr

2. RESEARCH PROCEDURE

2. Erosion due to curvature

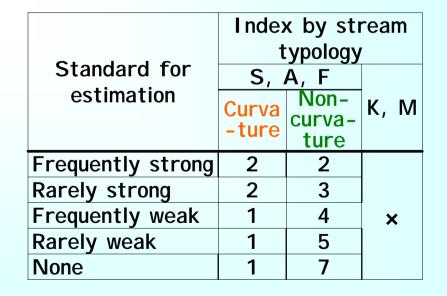
Cur. / Strong

Cur. / Strong

Cur. / Weak

Cur. / Weak

Non-Cur. / Strong


Non-Cur. / Strong

Non-Cur. / Strong

ng Non-Cur. / Weak

2. RESEARCH PROCEDURE

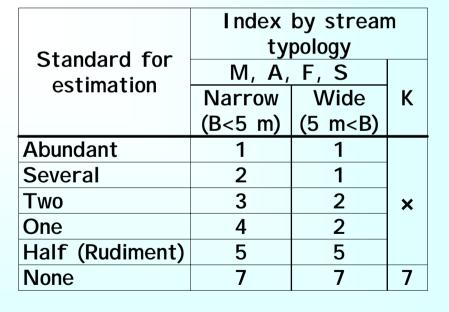
♦ 3. Lateral Patches

Riffle-pool/Distinct Steps/Distinct

Bar/Distinct

Artificial Pool

Riffle-pool/Rudiment Steps/Rudiment



Bar/Rudiment

Bar/Rudiment

www.kict.re.kr

11

2. RESEARCH PROCEDURE

♦ 4. Flow diversity

Smooth

Rushing

Wavy

Crest-forming

Standard for estimation	Index by stream typology		
	M, A, K	F	
Very High (Crest-forming, Rushing)	1	1	
High (Wavy)	2	1	
Moderate (Walking)	4	3	
Low (Smooth)	5	5	
None	7	7	

2. RESEARCH PROCEDURE

♦ 5. Depth variation

Standard for estimation	Index stream ty		
	M, A, K	F	
Very High	1	1	
High	2	1	CXIII CYL
Moderate	4	3	Sull o n Ch
Low	5	5	
None	7	7	

2. RESEARCH PROCEDURE

♦ 6. Lateral erosion

Moderate/Weak

Very Deep/Weak

Deep/Strong

Moderate/Weak

Very Deep/Weak

Very Deep/Strong

Very Deep/Strong

Standard for estimation	Index ty		
	Very	, F, S Moderate	
Depth of	Deep-	-Very	К
cross-Section	Deep	shallow	
	(B/H<4)	(B/H>4)	
Strong	3	3	
Weak	5	1	×
None	7	1	

2. RESEARCH PROCEDURE

7. Width variation

Moderate

High

15

	Standard for estimation	Index by stream type M, A, K, S	
	Very High	1	1
lillane	High	2	1
	Moderate	4	2
000000	Low	6	4
and the second	None	7	7

Very High

2. RESEARCH PROCEDURE


♦ 8. Substrate diversity

Clay/Silt/Loam	Silt & Mud	Sand	Gra	vel	178107-021
				Index I	
States Constants	and the second		Standard for	stream typ	-
Gravel and Stone	Block, Gravel & Stor	ne	estimation	S, A, K	F
and the second		110 110	Very High	1	1
		30 Mh	High	2	1
Sales and a second	- Juli	o n Ch	Moderate	4	2
		- (A)	Low	6	4
Bedrock			None	7	7

2. RESEARCH PROCEDURE

♦ 9. Special bed structures

Survey for Biotic Factors and Water Quality

Location

Iength of 1 km showing best natural state at each stream
 Vegetation

✓ Braun-Blanquet (1964) method Phytosociology

✓ Belt-transect Emergent species along cross-section

Benthic macro-invertebrate

- ✓ Quantitative sampling : Surber (1937) net
- ✓ Qualitative sampling : Hand-grab and collector
- ✓ Dominance, Diversity, Evenness, Richness indices

Water quality

 Data of Water Quality Monitoring Network (Ministry of Environment, Korea)

✓ pH, COD, BOD, DO, SS, T-N, T-P, NH3-N, PO4-P, water temperature, conductivity, and number of coliform

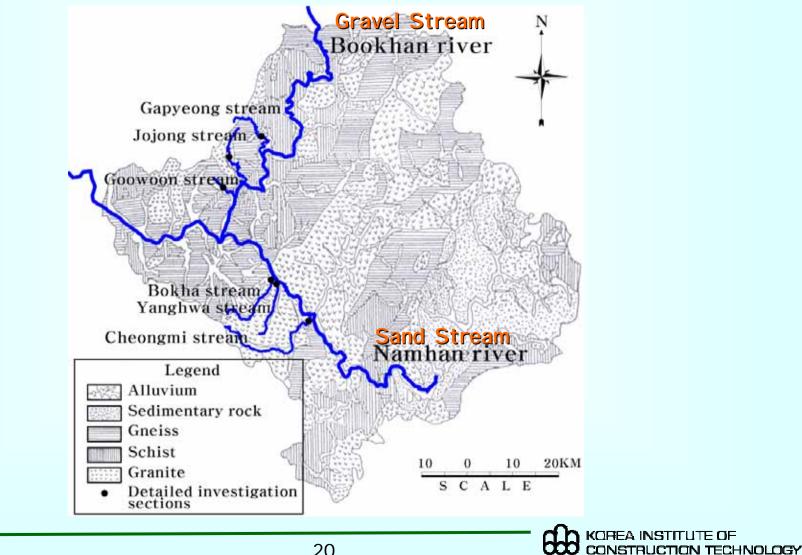
2. RESEARCH PROCEDURE

KOBEA INSTITU

Correlation Analysis Method

Ordination

	Indiraat	Principal Component Analysis Correspondence Analysis Detronded Correspondence Analysis
N ЛI+;	Mothod	Correspondence Analysis
variate	Method	Detrended Correspondence Analysis
Analysis	Direct	ReDundancy Analysis
Anarysis	Direct Method	Canonical Correspondence Analysis
	wethou	Detrended Canonical Correspondence Analysis


Programs

- CANOCO 4.5 (ter Braak, C.J.F. and Šmilauer, P.; 2002): RDA, CCA
- SPSS 13 (Statistical Package for the Social Science): Pearson Correlation, PCA

3. RESULTS

Location and Geology of Survey Streams

3. RESULTS

Field Survey for River Structure

Curvature of channel (Very Strong)

Lateral patches (One)

Erosion due to curvature (Frequently Strong)

Flow diversity (Rushing Very High)

Depth variation (Very High)

Width variation (Moderate)

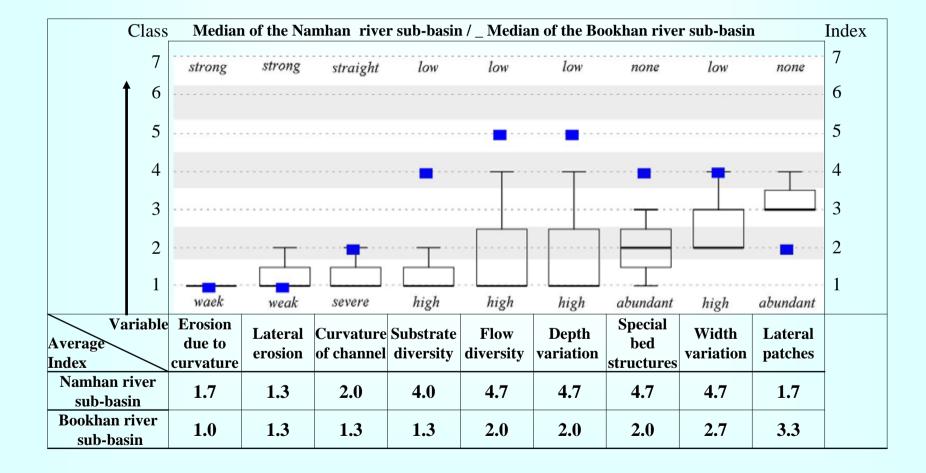
Lateral erosion (Very Deep/Strong)

Substrate diversity (Moderate)

Special bed Structures (Darting Spot)

Special bed Structures (Root Spot)

Special bed Structures (Still Side-pool)


3. RESULTS

KOREA INSTITUTE OF

CONSTRUCTION TECHNOLOGY

Hydromorphological Structure

3. RESULTS

KOREA INSTITUTE OF

Benthic Macro-invertebrate

• 62 Species : 1: *Tipulide* sp.1, 2: *Tipulide* sp.2, 3: *Nothopsyche* KUa, 4: *Kamimuria* KUa, 5: Baetis fuscatus, 6: Calopteryx atrata, 7: Ranatra chinensis, 8: Glossosoma KUa, 9: Chironomidae sp. 1, 10: Laccophilus difficilis, 11: Micronecta sedula, 12: Hydaticus grammicus, 13: Baitis thermicus, 14: Goerodes KUa, 15: Ecdyonurus levis, 16: Macromia daimoji, 17: Whitmania edentula, 18: Semisulcospira libertina, 19: Erpobdella lineata, 20: Ephemera orientalis, 21: Paraleptophlebia chocolata, 22: Sympetrum eroticum, 23: Ecdyonurus kibunensis, 24: Cercion calamorum, 25: Whitmania pigra, 26: Unio douglasiae, 27: Anax nigrofasciatus, 28: Ephemera strigata, 29: Rhyacophila KUa, 30: Lymnaea auricularia, 31: Muljarus japonicus, 32: Cincticostella levanidovae, 33: Orthetrum albistylum speciosum, 34: Platycnemis phillopoda, 35: Epeorus pellucidus, 36: Drunella aculea, 37: Aquaris paludum, 38: Davidius lunatus, 39: Hippeutis cantori, 40: Limnodrilus gotoi, 41: I schnura asiatica, 42: Rhantus pulverosus, 43: Baetiella tuberculata, 44: Sieboldius albardae, 45: Stenopsyche bergeri, 46: Gabbia misella, 47: Hesperocorixa kolthoffi, 48: Physa acuta), 49: Wormaldia KUa, 50: Laccotrephes japonensis, 51: Rhoenanthus coreanus, 52: Corbicula fluminea, 53: Semisulcospira tegulata, 54: Hydropsyche KUa, 55: I ron aesculus, 56: Macrobrachium nipponense, 57: Anodonta woodiana, 58: Semisulcospira coreana, 59: Stylurus annulata, 60: Potamonectes hostilis, 61: Dytiscidae sp. 1, 62:Dytiscidae sp. 2

Common species

Gravel stream	Sand stream	Gravel and sand stream
15	9	5

Result of RDA for hydromorphological structure

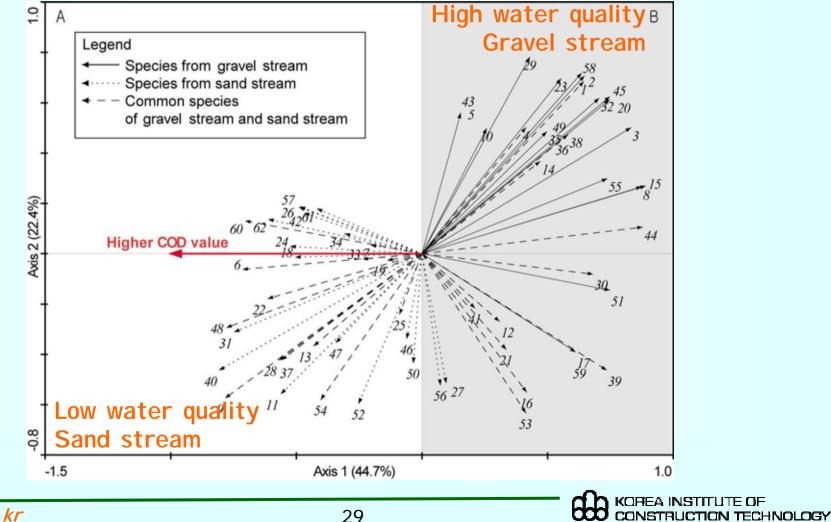
Axis Result	Axi	s 1	Axi	s 2	Total variable
Sum of all eigenvalues					1
Sum of all canonical eigenvalues					0.821
Eigenvalues ()	0.5	89	0.1	68	1
Cumulative percentage variance					
of species data	58	.9	75	.7	
of species-environment relation	71	.7	92	.2	
Species-environment correlations (R)	0.989 0.977				
Canonical coefficients (c) and intra-set correlations (r)	С	r	С	r	
of environmental variable EN2 (Lateral erosion)	-0.0575	-0.4265	-0.4708	-0.3829	
of environmental variable EN4 (Curvature)	0.5015	-0.7316	1.7271	0.6294	
of environmental variable EN6 (Substrate diversity)	-1.3867	-0.968	-1.0978	0.2435	

- ✓ Three environmental variables by forward selection.
- ✓ 'Axis 1-EN6' and 'Axis 2-EN4' have strong influence.
- ✓ Axis 1 explains 58.9 % of variance of species and 71.7 % of species-environment correlation.
- ✓ Axis 2 explains 16.8 % of variance of species and 20.5 % of species-environment correlation.

2008 The 5th International Forum on Waterfront and Watershed 3. RESULTS RDA ordination graph for hydromorphological structure **A Sand stream** 0. в 7 50 EN4: Higher index, straight curvature 3 **Higher index: EN6** low substrate Axis 2 (16.8%) diversity Higher index:EN high lateral erosion 58 60 Legend 29 Species from gravel stream Species from sand stream -1.0 - - Common species of gravel stream and sand stream Gravel stream D |C -1.5 Axis 1 (58.9%) 1.5 KOREA INSTITUTE OF CONSTRUCTION TECHNOLOGY

3. RESULTS

Result of RDA for COD


Axis Result	Axi	s 1	Ах	is 2	Total variable
Sum of all eigenvalues					1
Sum of all canonical eigenvalues					0.447
Eigenvalues ()	0.4	47	0.2	224	1
Cumulative percentage variance					
of species data	44	.7	6	7	
of species-environment relation 100		0			
Species-environment correlations (R)	0.868 0				
Canonical coefficients (c) and intra-set correlations (r)	С	r	С	r	
of environmental variable COD	-1	-1	0	0	

- One environmental variables by Pearson correlation and forward selection of PCA.
- ✓ Axis 1 explains 44.7 % of variance of species and 100 % of species-environment correlation.
- ✓ Axis 2 explains 22.4 % of variance of species though it is not attributed by environmental variables.

RDA ordination graph for COD

www.kict.re.kr

3. RESULTS

3. RESULTS

Plants from Belt-transect

• 116 Species : 1: Ailanthus altissima, 2: Galium spurium, 3: Setaria vidis, 4: Rorippa indica, 5: Ampelopsis

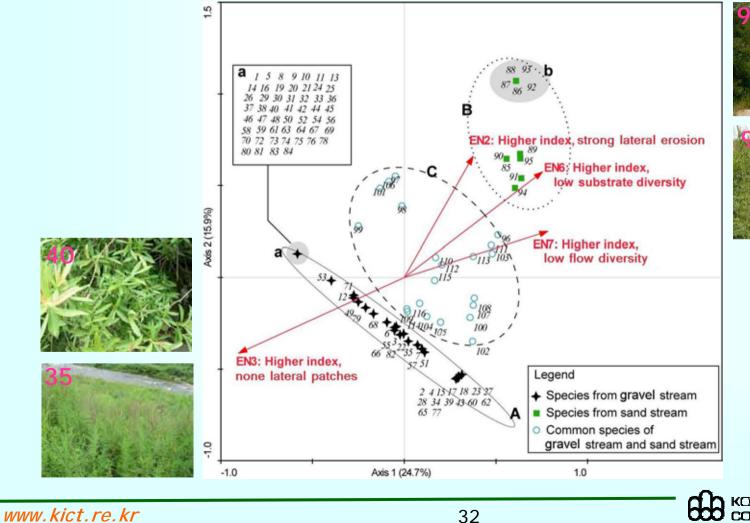
brevipedunculata V. heterophylla, 6: Salix gracilistyla, 7: Youngia sonchifolia, 8: Pteridium aquilinum V. latiusculum, 9: Staphylea bumalda, 10: Securinega suffruticosa, 11: Oxalis corniculata, 12: Stephanandra incisa, 13: Carex Ianceolata, 14: Festuca ovina, 15: Trigonotis peduncularis, 16: Vicia unijuga, 17: Impatiens noli-langere, 18: Corydalis ochotensis, 19: Actinidia arguta, 20: Maackia amurensis, 21: Acer palmatum, 22: Commelina communis, 23: Bilderdykia dumetora, 24: Parthenocissus tricuspidata, 25: Carex siderosticta, 26: Aceriphyllum ossii, 27: Ambrosia artemisiifolia V. elatior, 28: Alopecurus aegualis V. amurensis, 29: Woodsia manchuriensis, 30:Kummerowia striata, 31:Berberis koreana, 32:Hypericum ascyron, 33:Impatiens textori, 34:Bidens frondosa, 35: Aster pilosus, 36: Cardamine leucantha, 37: Angelica decursiva, 38: Duchesnea chrysantha, 39: Stellaria alsine V. undulata, 40: Weigela subsessilis, 41: Rhus chinensis, 42: Hosta longipes, 43: Torilis japonica, 44: Rubus crataegifolius, 45: Morus bombycis, 46: Crataegus pinnatifida, 47: Rhododendron yedoense V. poukhanense, 48: Vicia angustifolia V. segetilis, 49: arex dispalata, 50: Menispermum dauricum, 51: Amphicarpaea edgeworthii V. trisperma, 52: Lycopus ramosissimus V. japonicus, 53: Acer ginnala, 54:Lespedeza bicolor, 55:Aster yomena, 56:Malus sieboldii, 57:Chelidonium majus V. asiaticum, 58:Onoclea sensibilis V. interrupta, 59: Potentilla fragarioides var. major, 60: Persicaria hydropiper, 61: Hemerocallis fulva, 62: Lactuca indica var. laciniata, 63: Youngia denticulata, 64: Callicarpa japonica, 65: Trisetum bifidum, 66: Viola mandshurica, 67: Artemisia japonica, 68: Arthraxon hispidus, 69: Lespedeza maximowiczii, 70: Spiraea prunifolia for. simpliciflora, 71: Viola acuminata, 72: Quercus serrata, 73: Boehmeria spicata, 74: Lysimachia vulgaris V. davurica, 75: Gleditsia japonica V. koraiensis, 76: Aristolochia contorta, 77: Hemistepta Iyrata, 78: Plantago asiatica, 79: Rosa multiflora, 80: Lilium tigrinum, 81: Aster scaber, 82: Pueraria thunbergiana, 83: Viola verecunda, 84: Euonymus alatus for. ciliato-dentatus, 85: Oenanthe javanica, 86: Metaplexis japonica, 87: Pinus densiflora, 88: Quercus mongolica, 89: Rubia cordifolia V. pratensis, 90: Salix koreensis, 91: Persicaria perfoliata, 92: Robinia pseudo-acacia, 93: Rosa multiflora, 94: Artemisia selengensis, 95: Phragmites communis, 96: Bromus japonicus, 97: Quercus aliena, 98: Morus alba, 99: Miscanthus sinensis V. purpurascens, 100: Beckmannia syzigachne, 101: Dioscorea batatas, 102: Agropyron tsukushiense V. transiens, 103: Stellaria aquatica, 104: Oenothera odorata, 105: Rumex crispus, 106: Fraxinus rhynchophylla, 107: Persicaria thunbergii, 108: Erigeron canadensis, 109: Clematis apiifolia, 110: Carex dispalata, 111: Phalaris arundinacea, 112: Erigeron annuus, 113: Humulus japonicus, 114: Equisetum arvense, 115: Artemisia princeps V. orientalis, 116: Phragmites japonica

Common species

WWW

	Gravel stream	Sand stream	Gravel and sand stream	
	29	7	9	
w. k	kict.re.kr	30	KOREA INSTITUTE OF	INOLOGY

Result of CCA for hydromorphological structure


Axis Result	Axis 1		Axis 2		Total variable
Sum of all eigenvalues					2.519
Sum of all canonical eigenvalues					1.495
Eigen values ()	0.624		0.398		1
Cumulative percentage variance					
of species data	24.7		40.6		
of species-environment relation	41.7		68.4		
Species-environment correlations (R)	0.997		0.979		
Canonical coefficients (c) and intra-set correlations (r)	С	r	С	r	
of environmental variable EN2 (Lateral erosion)	-0.5251	0.3741	0.7858	0.6571	
of environmental variable EN3 (Lateral patches)	-1.6684	-0.9007	1.2269	-0.4117	
of environmental variable EN6 (Substrate diversity)	-0.7324	0.7517	2.1906	0.573	
of environmental variable EN7 (Flow diversity)	0.3125	0.7816	-1.069	0.2493	

✓ Four environmental variables by forward selection.

- ✓ 'Axis 1-EN3' and 'Axis 2-EN6' have strong influence.
- ✓ Axis 1 explains 24.7 % of variance of species and 41.7 % of species-environment correlation.
- ✓ Axis 2 explains 15.9 % of variance of species and 26.7 % of species-environment correlation.

CCA ordination graph for hydromorphological structure

3. RESULTS

KOREA INSTITUTE OF CONSTRUCTION TECHNOLOGY

4. CONCLUSION

Benthic macro-invertebrates

- They have strong correlations with substrate diversity and curvature of channel.
- They can be classified into two groups observed in a sand stream and gravel stream.
- Concentration of COD was only selected as a significant factor influencing their habitats.

🔶 Plants

- ✓ They have strong correlations with lateral patches like bars, steps, and riffle-pools and substrate diversity.
- They can also be classified into two groups observed in a sand stream and gravel stream.

Suggestion

✓ There can be significant differences in hydromorphological and ecological characteristics between a sand stream and gravel stream.

Thank You!

