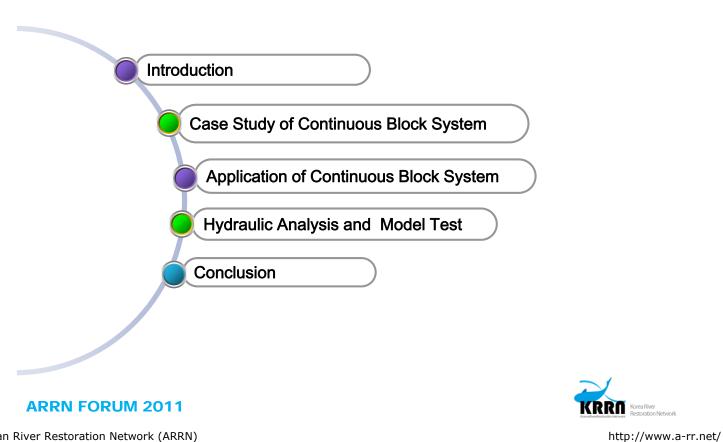


Development of Technology for Waterfront Creation and Case Study of Continuous Block System


2011. 11. 11

Sukhwan JANG.

Daejin University

(RR)

ARRN FORUM 2011

1. Introduction

Current Status of Urban Streams

For the last decades before 21st century, stream management based on government-led planning had been mainly considered with the use of water and flood-control in urban areas. As results, the ecology of urban streams was more deteriorated due to

- -. Drying of stream
- -. Straightening of stream channel
- -. Concrete covering and bank protection
- -. Artificial riverbed
- -. Water pollution
- -. Covering and pavement of stream
- -. Crossing obstacle in stream
- -. Parking lot construction in stream

Damaged aquatic ecosystem in stream

ARRN FORUM 2011

1. Introduction

Research Team Objectives

- Development of nature friendly waterfront technology to improve ecological function as well as hydraulic safety between river and bank
- Restoration of aquatic ecosystem and improvement of diversity in waterfront
- Improvement of aesthetic function nearby waterfront and securing nature-friendly leisure and resting places for the residents


ARRN FORUM 2011

Development of Technology for Creation of Waterfront

Mattress groyne system composed of natural materials in streams

Soft-bag system for the creation of natural water front

(RRA

ARRN FORUM 2011

Geo-green Loess Fiber Block

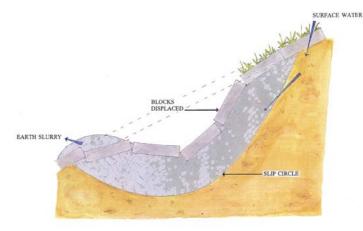
Soil-layered system reinforced with fibers for vegetation

Grass-con system of continuous block system

Frame system composed of burned woods

Asian River Restoration Network (ARRN)

2. Case Study of Continuous Block System

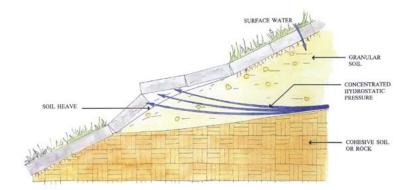

- Background of Continuous Block System Development
 - Propelled River Restoration and Rehabilitation after 90's
 - Hydraulic Safety Problems of Existing Slope
 Protection Methods for Close-to-Nature Application
 - Sustainable Urban Drainage System
 Pervious Area Reduction
 - New Method for Safe and Environmental Slope Protection and Urban Drainage
- Approaches
 - Review of Existing Block Application System
 - for Slope Protection in River Banks
 - F Hydraulic Analysis for GRASSCON
 - Physical Model Test Numerical Analysis

ARRN FORUM 2011

Not Available of Co-exceeded between Hlydraulic Safety and Vegetation ? Image: State of the state of

2. Case Study of Continuous Block System Existing Block System CAUSES OF PRE-CAST BLOCK FAILURES

ROTATIONAL SLIP CIRCLE


Caused by Water Intrusion at the Top of the Slope

ARRN FORUM 2011

2. Case Study of Continuous Block System

CAUSES OF PRE-CAST FAILURES

SURFACE HEAVE

Caused by Static Pressure between Two Impervious Layers

http://www.a-rr.net/

ARRN FORUM 2011

Tractive Forces and Erosion against High Velocity

ARRN FORUM 2011

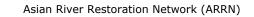
2. Case Study of Continuous Block System

Review of Some Problems

Interlocking between Units

ARRN FORUM 2011

3. Application of Continuous Block System **THE GRASSCON SYSTEM** PERFORMANCE

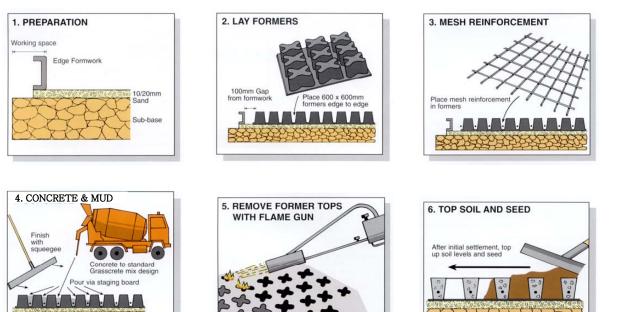

PERFORMANCE OF REINFORCED MATERIAL with GRASS

In-Situ Applicable Continuous Structure

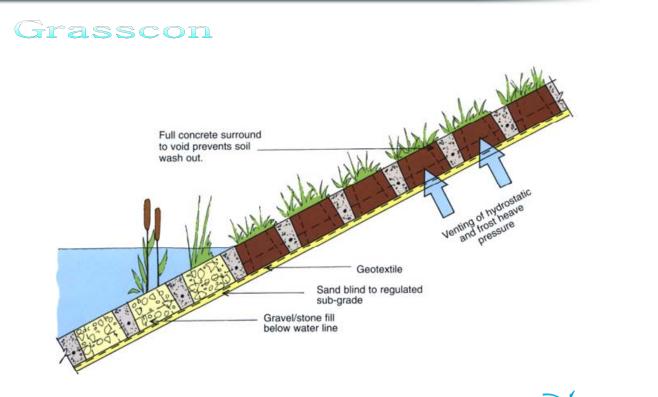
NO PRE-CASTi Filler Reinforcement

Former

ARRN FORUM 2011

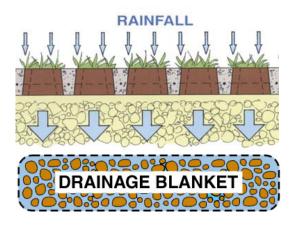


KRRN Korea River Restoration Network


3. Application of Continuous Block System

GRASSCON – APPLICATIONSEQUENCE

ARRN FORUM 2011


ARRN FORUM 2011

KRRN Korea River Restoration Network

5

KRRN

3. Application of Continuous Block System

PREVENTION OF LOCAL FLOODS
 RETENTION OF SURFACE WATER
 INCREASED DRAINAGE LAG TIME
 REDUCED DOWNSTREAM FLOODING

ARRN FORUM 2011

3. Application of Continuous Block System

RESERVOIRS AND SPILLWAYS

http://www.a-rr.net/

ARRN FORUM 2011

3. Application of Continuous Block System

REPAIRED RIVER EMBANKMENTS FROM FLOOD

ARRN FORUM 2011

20

9

3. Application of Continuous Block System

SUPPORTING A WIDE RANGE OF VEGETATION IN FLOOD STORAGE

RESIST EROSION UNDERNEATH

Asian River Restoration Network (ARRN)

3. Application of Continuous Block System

TESTED VELOCITY RESISTANCE AGAINST FAILURE TO OVER 8METRES/SECOND

ARRN FORUM 2011

3. Application of Continuous Block System

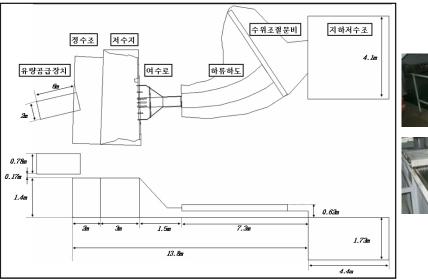
Samples of GrassCon

Asian River Restoration Network (ARRN)

4. Hydraulic Analysis and Physical Model Test

Physical Model Test

- 🖝 Scale
 - ► Froude Similarity 1/50
- Prototype
 - ► Length 212m,
 - Width 35m
 - ▶ Bed Slope 1.6%
 - ▶ Bank Slope : L(1:2.0), R(1:3.0)
- Discharge Condition (Bohyun River) :
 - 200m³/sec (100yr Design Flood)
 - ► 400m³/sec
 - ► 600m³/sec (PMF)

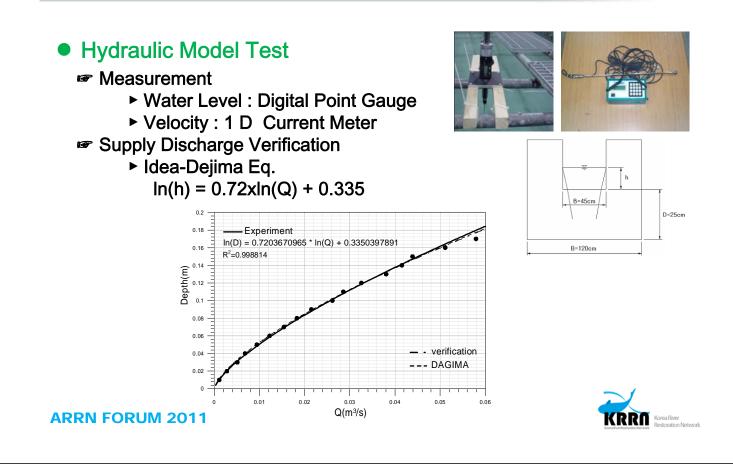

23

ARRN FORUM 2011

4. Hydraulic Analysis and Physical Model Test

HYDRAULIC Model Test

Facilities



ARRN FORUM 2011

4. Hydraulic Analysis and Physical Model Test

4. Hydraulic Analysis and Physical Model Test

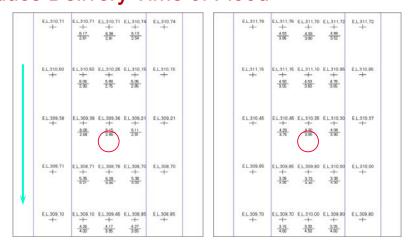
Hydraulic Model Test

- Experiments Performed
 - GrassCon Application for with/without Vegetation Condition
 - ▶ Q = 200, 400, 600m³/sec
 - Measurement for Water Levels, Velocities

>

- > without Vegetation
- > with Vegetation

Asian River Restoration Network (ARRN)


ARRN FORUM 2011

4. Hydraulic Analysis and Physical Model Test

Results of Physical Model Test

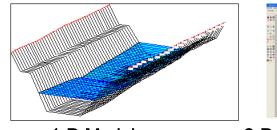
☞ Q=200m³/sec Condition

- ▶ Velocities : $6.15 \rightarrow 4.30$ m/sec(3.5%~19% decrease)
- ► Water Level : 2.86 → 3.85m (1.4%~28% increase)
- **Reduce Delivery Time of Flood**

without Veg.

Korea River Restoration Networ

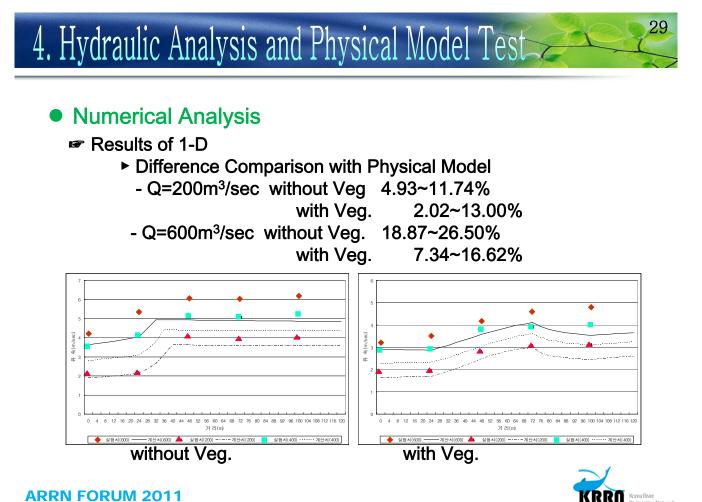
ARRN FORUM 2011

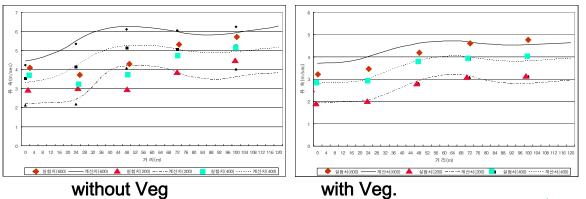

4. Hydraulic Analysis and Physical Model Test

With Veg.

- Simulation
 - I-D Model : HEC-RAS(45 section structure)
 - 2-D Model : SMS(1141 nodes structure)
- Model Calibration
 - Parameter (Roughness Coefficient) : 1-D Model
 - without Vegetation : 0.017~0.035

- with Vegetation : 0.040~0.060

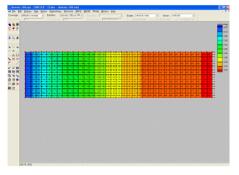



ARRN FORUM 2011

4. Hydraulic Analysis and Physical Model Test

Numerical Models

- 2-D Results
 - Difference Comparison with Physical Model
 - Q=200m³/sec without 1.21~10.22%
 - with 2.50~10.54%
 - Q=600m³/sec without 0.12~5.20% with 2.34~10.86%



ARRN FORUM 2011

4. Hydraulic Analysis and Physical Model Test

Numerical Analysis

- 2-D Simulation Results
 - Closer Results to Physical Model Results than 1-D
 - 2-D Simulation is more Rational

Concept	(stat courses				30.00	-		5			2 9	ere F		2	1962	-	•		•		
						-			10.00	-										-	-
747																					
40.4																					
424																					
A41																					
040																					
222																					
0.00																					
200																					
994		_																			_
0.5 *																					
1 4 X		· ·	÷. ÷.																		
				**																	
			<u> </u>										-	-					1.1	-	1.12
			<u></u>		-	- 13			-	1			-	÷					÷	-	
			E-E-																1.1		
				E-E	£-1				-						-			1.	te t		
							-														
						100	-														

Velocity Vectors without Veg.

Velocity Vectors with Veg.

ARRN FORUM 2011

Summary and Conclusion Review Characteristics between Existing Pre-cast Block System and Continuous Block System in Terms of Hydraulic Safety and Environment Continuous Block System in Terms of Hydraulic Safety and Environment Application Feasibility for Close-to-Nature Stream River Works and Sustainable Urban Drainage Verification through Hydraulic Model Test for CBS Velocities Decrease, Water Level Increase Numerical Analysis Application 1-D, 2-D Simulation : Roughness Coefficient Verification 2-D Simulation Analysis is More Rational Further Study Goes : Flow Resistance and Maximum Allowable Velocities

Asian River Restoration Network (ARRN)

Thank you

ARRN FORUM 2011

33