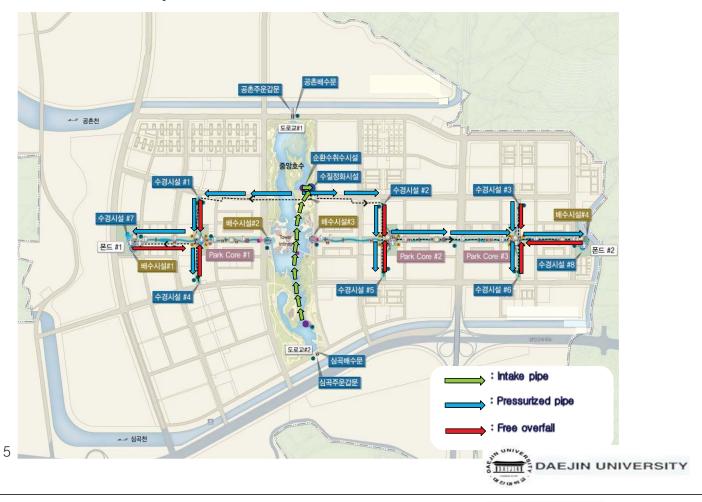


BEIJING 2012

Introduction

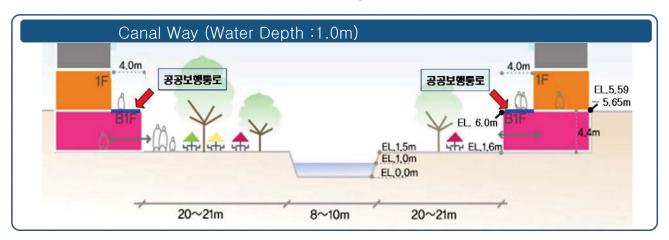
- Water circulation system facility in newly developing urban area is popular in Korea.
- It is important to analyze flow patterns and water quality distribution because most of the water circulation systems has very low velocities and depth in the inland navigation.
- The reference site of this study is composed of artificial lake and waterways in urban area developing residence complex
- The purpose of this study is to review the velocity distribution, flow trace and water quality in the lake and navigation waterways

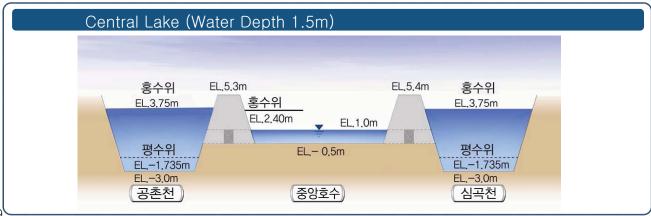
Plan of Water Circulation and Canal Way


- Project Outline
 - Location: FEZ, Incheon, Korea
 - Closed Water Canal System
- Characteristics
 - Waterfront, Landscaping
 - Fine Amenity in Residence Con
 - Navigation for Boat and Water
- Expenditure
- Total Budget: 70 Mil. USD
- Period
 - 2009.06.01 : Starting Construction
 - 2013.08.31 : Completion

Water Circulation System

Bird's Eye View of


Major Facilities


	Canalway	E-W Canal 3.0km(width 9~10m), S-N Canal 1.5km(width 5m)		
主要	Shipping Facilities	12 Docks, 2 Operation Gates, 2 Discharging Gates, 2 Overpass Bridges		
施	Water Circulation System	Intake/Distribution Pump, Distribution Pipes 5.7km 2 Pond, 유입용수 수경시설		
設 物	Water Purification Facilities	Central Lake, Q = 16,100 m³/day		
	Eco & Environmental Facilities	Fountain, Self Purification Plants, Water Corridor		

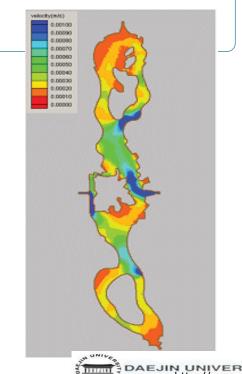
附代	Path Bridge	15 in E-W Canal, 6 in S-N Canal
	Improvement of Water Quality	Initial Rainfall Treatment(12), Aeration(20)
設物	Measurements	Rainfall, Water Stage, Water Qualty, CCTV
	Water Proofing	Bed of Canalway 97,162m²

Cross Section of Lake and Canalway

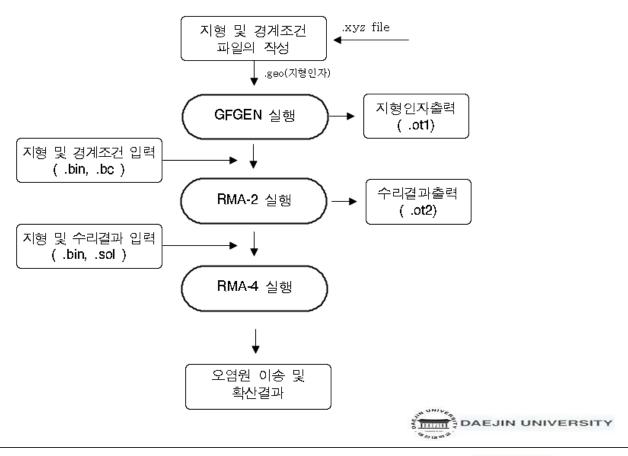
Numerical Analysis

Flow Analysis in Lake and Canal Way

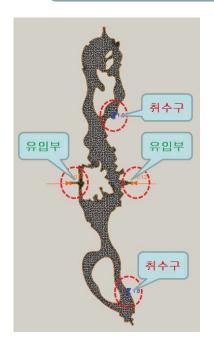
- Review of Optimal Flow Condition along the Intake Position in Central Lake
- Review of Flow Pattern and Optimal Water Distribution in the Canal Way
- 2-D Hydraulic Simulation Model: RMA-2, RMA-4,
 - ✓ Suggestion of Revised Plan in terms of Detention effect in Lake and Waterway
- 3-D Flow Analysis by FLOW-3D Model
 - ✓ Eddy Viscosity Calibration for Optimal Water Distribution

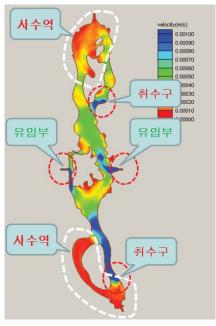


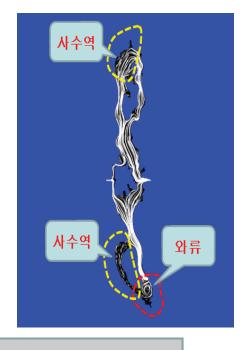
Application of Simulation Model


- ❖ RMA-2 Model
 - Developed by Norton, King, Orlob and Brighham Young University
 - 2-D FEM Program for Steady and Unsteady Flow
 - Governing Equation :

$$\begin{split} \frac{\partial h}{\partial t} + \frac{\partial (hu)}{\partial x} + \frac{\partial (hv)}{\partial y} &= 0 \\ \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + g \bigg(\frac{\partial h}{\partial x} + \frac{\partial a_0}{\partial x} \bigg) + \frac{g \, u}{C^2 h} \sqrt{u^2 + v^2} &= \frac{\epsilon_{ux}}{\rho} \frac{\partial^2 u}{\partial x^2} + \frac{\epsilon_{xy}}{\rho} \frac{\partial^2 u}{\partial y^2} \\ \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + g \bigg(\frac{\partial h}{\partial y} + \frac{\partial a_0}{\partial y} \bigg) + \frac{g \, v}{C^2 h} \sqrt{u^2 + v^2} &= \frac{\epsilon_{ux}}{\rho} \frac{\partial^2 v}{\partial x^2} + \frac{\epsilon_{yy}}{\rho} \frac{\partial^2 v}{\partial y^2} \end{split}$$

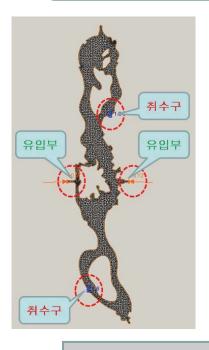


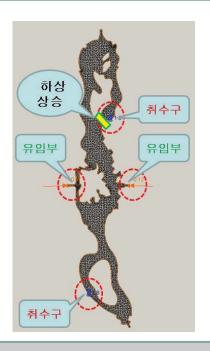

Simulation Flowchart for Flow Pattern and Pollutant Transport and Diffusion in RMA Model



ARRN Restoration Network BEIJING 2012

Velocity Distribution and Flow Trace for Original Plan

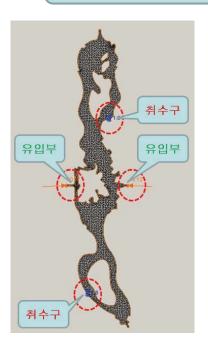


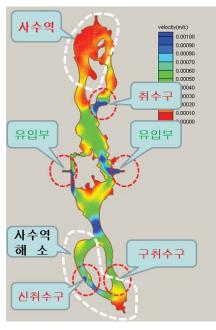

Discharging directly to near intake facility


- Short cut phenomenon and bad mixing circulation
- Vortex and dead zone appear in the North and South area

Shape of Alternative 1, 2 and 3 Improving Flow Condition

Alternative 1: Moving South Intake Point


Alternative 2: Rising Bed Elevation near North Intake Point

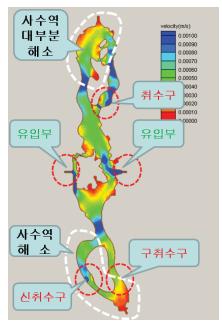

Alternative 3: Separation near North Intake Point

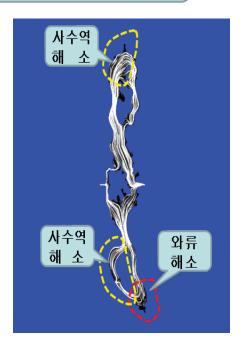
ARRN
Asian River
Restoration Network

BEIJING
2012

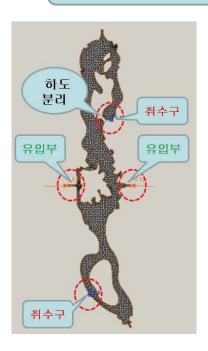
Velocity Distribution and Flow Trace for Alternative 1

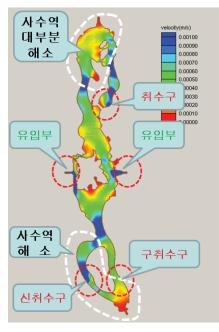


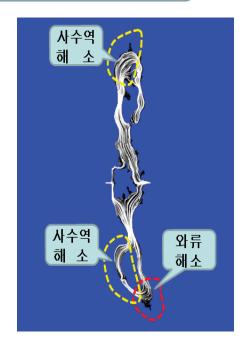

Moving Intake to the South ☞ Improving Vortex and Mixing


Condition in South → But Not in North

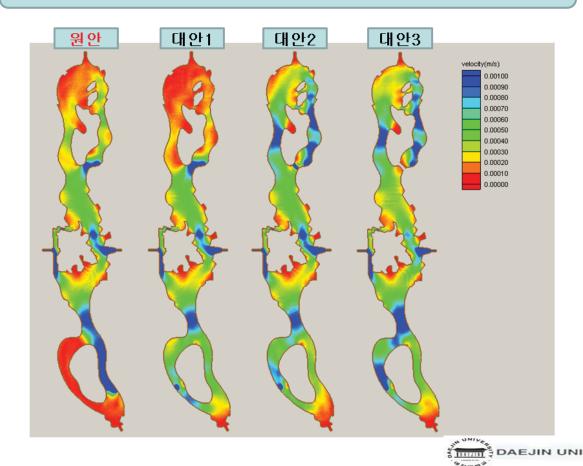
Velocity Distribution and Flow Trace for Alternative 2



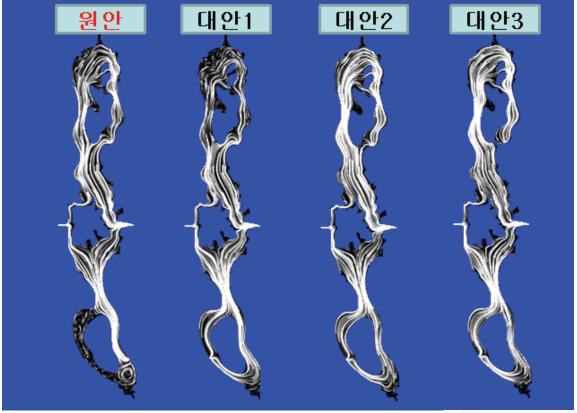

Rising the Bed Elevation near the North Intake Structure


Improving Vortex and Mixing Condition in the North

Velocity Distribution and Flow Trace for Alternative 3

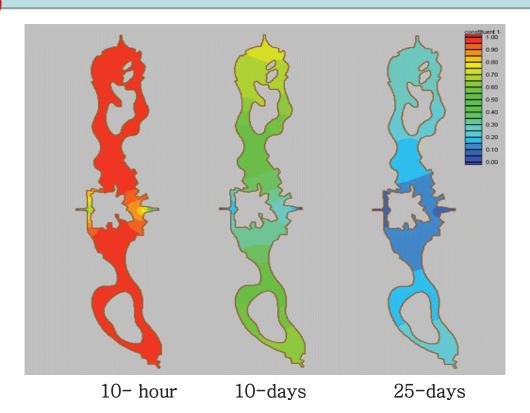


Separation of the Bed near the North Intake Structure

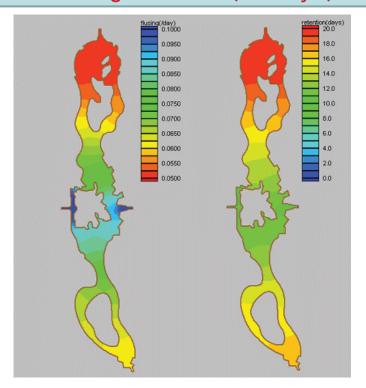

Improving Vortex and Mixing Condition in the North

Velocity Comparison of Original Plan and Alternatives

ARRN Alan River Restoration Network 2012


Flow Trace Comparison of Original Plan and Alternatives

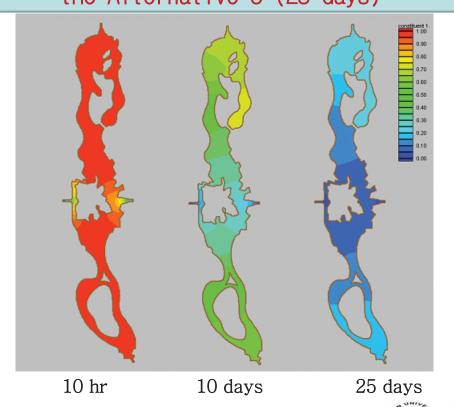
Dilution Rate for the Original Plan of Lake(25


days)

Pollutant Dilution Simulation Result for the Original Plan(25 days)

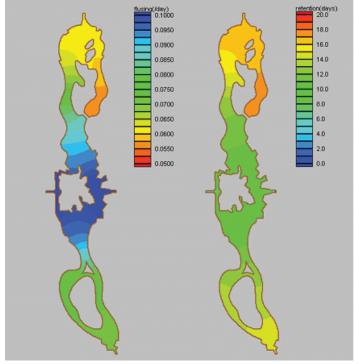
Shows
Detention more
than 20-days in
the North Area

(a) Diiution Rate

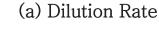

(b) Detention Time

BEIJING 2012

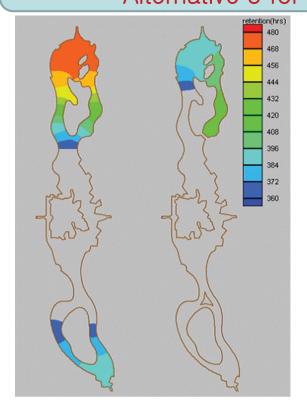
Pollutant Dilution Simulation Result for the Alternative 3 (25 days)



ARRN Asian River Restoration Network


BEIJING 2012

Pollutant Dilution Simulation Result for the Alternative 3(25 days)


(b) Detention Time

Reduced
Detention Time
within18 days

The 9th International Forum on Waterfront and Watershed Restoration(2012/11/24)

Detention Comparison between Original and Alternative 3 for 360 hr (15 days)

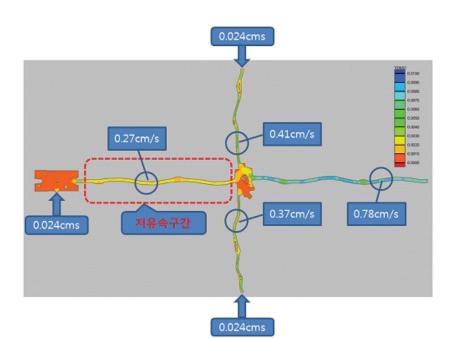
For the Original Plan, More than 480 hrs Detention Time (20 days) appears in the South and North area.

For the Alternative 3, Retention did not appear at all after 430 hrs(18 days)

**Algae can possibly appears in Case of Original Plan

(a) Original Plan 3

(b) Alt.

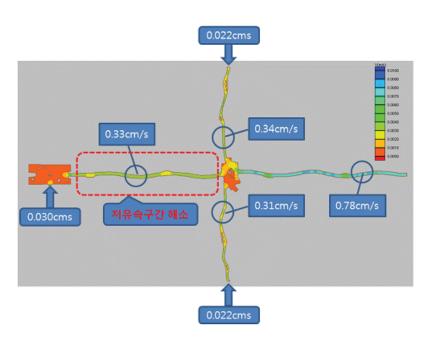


BEIJING 2012

Canal Way Flow Pattern Analysis

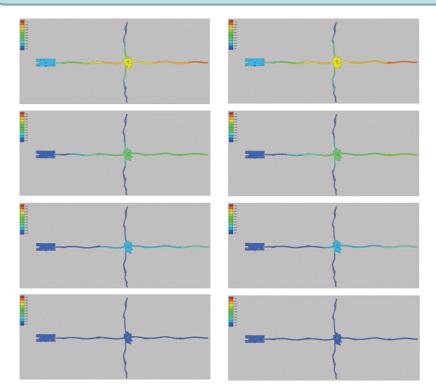
Velocity Distribution for Left Side Canal Way in Case of Uniform Water Supply

For the original Plan when water Supplies Uniformly,


the Velocity of E-W water way shows 30% lower than That of N-S Waterway

Canal Way Flow Pattern Analysis

Velocity Distribution for Left Side Canal Way in Case of non-Equal Water Supply


For the Revised Distribution Plan when water Supplies unequally,

the Velocity of E-W water way shows 50% lower than That of N-S Waterway

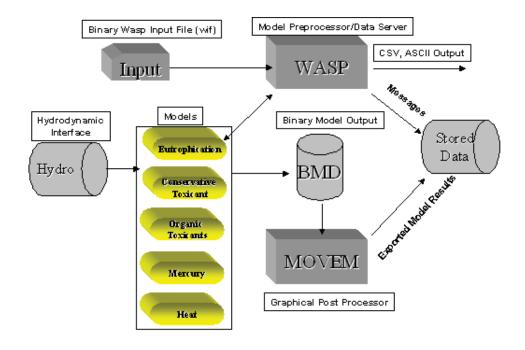
Improvement of VelocityDistribution

Dilution Rate Comparison between Original Plan and

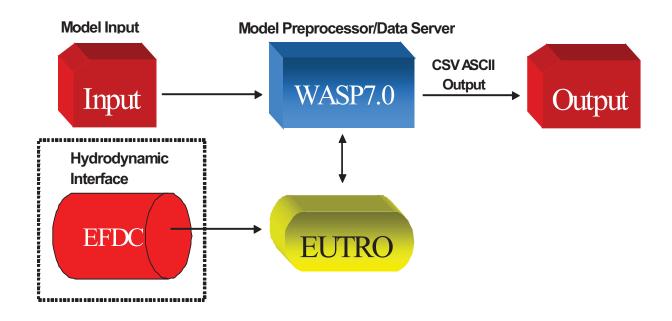
Revised Plan

For the Revised Plan,

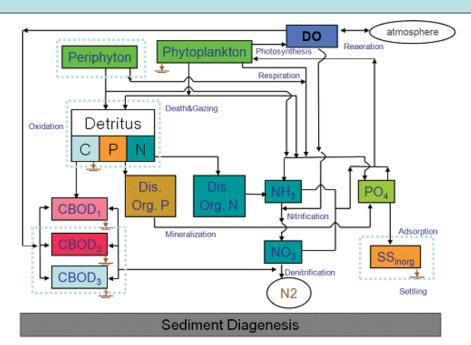
It shows Dilution Rate Improved


O.P.(Left) and R.P.(Right) (30hr, 60hr, 90hr, 120hr)

Schematic of WASP Model

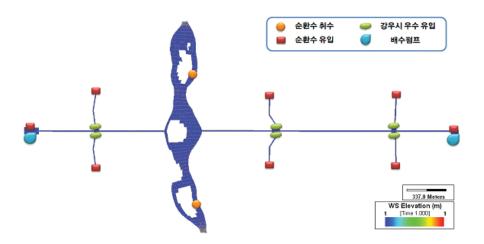


Schematic of WASP


WASP Modeling Framework

WASP 모델의 개요

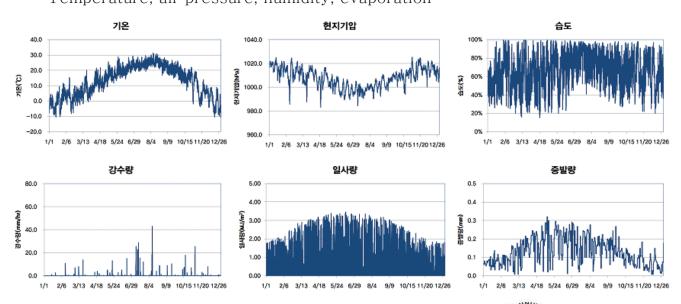
In the EUTRO module of WASP Model, 8 water quality item(NH3-N, NO3-N, PO4-P, DO, CBOD, Chla, Org-N, Org-P) can be simulated work (ARRN)



Application of EFDC Hydrodynamic

Input Data

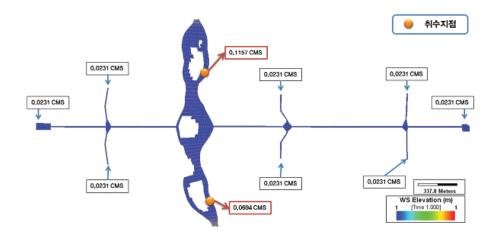
- 274 Grid cells were structured for Central Lake and Waterway
- Precipitation, Circulation Inflow and Intake were considered



Application of EFDC Hydrodynamic

Input data - Meteorological data

- Hourly rainfall observation data of 2010 were adopted as well as
- Temperature, air pressure, humidity, evaporation



Application of EFDC Hydrodynamic

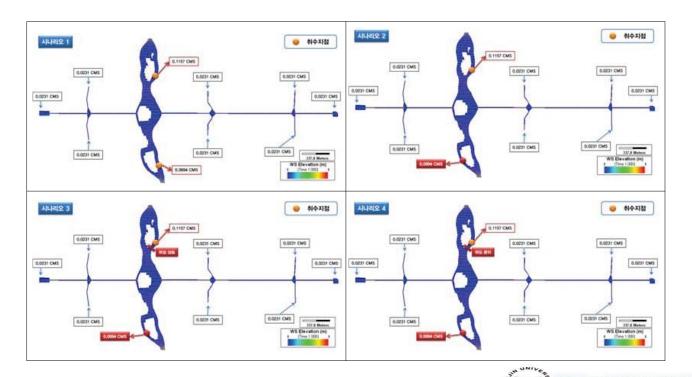
Input data condition - Inflow and Intake outflow

- Circulation and Intake quantity 16,000 m³/day) should be considered

Application of WASP Model

Initial Condition of Water Quality

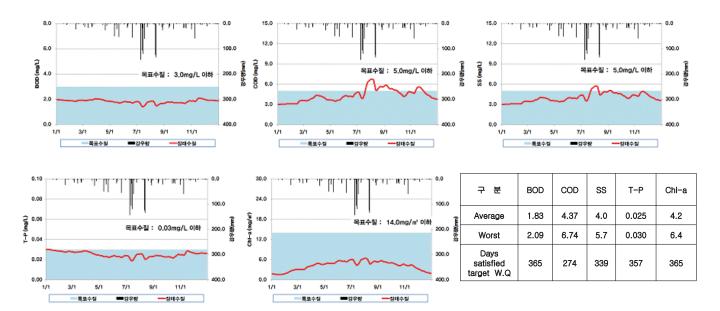
- Water Quality of Circulation Inflow adopted Target quality
- Inflow water quality of rainfall adopted water quality concentration of road runoff


Item	BOD (mg/L)	COD (mg/L)	SS (mg/L)	T-P (mg/L)
Circulation W.Q.C	2.0	3.0	3.0	0.025
Rainfall Inflow W.Q.	24	103	141	0.430

Application of WASP Model

Scenarios of Original Plan and Alternative 1, 2, and 3

Application of WASP Model


Results of Water Quality Simulation by WASP

- Compared Water Quality differences at 4 points in the Lake in terms of each scenario
- Point 2 and 3 show a little higher than point 1 and 4 because nonpoint pollutant transported from the waterways in the rainy season.
- Annual Average water quality satisfies target water quality except rainy season

Results of Simulation by WASP Model

Sample Results of Original Plan - Point 1

Results of Simulation by WASP Model

Comparison of BOD in terms of each scenario

구 분		Original Plan	Alternative 1	Alternative 2	Alternative 3
	Annual Average	1.83	1.83	1.83	1.93
Point #1	Worst Case	2.09	2.09	2.15	2.36
T OILL # 1	Days satisfied with target W.Q.	365	365	365	365
	Annual Average	2.03	2.03	2.04	2.09
Point #2	Worst Case	2.66	2.66	2.77	3.01
	Days satisfied with target W.Q.	365	365	365	364
	Annual Average	2.03	2.03	2.03	2.05
Point #3	Worst Case	2.88	2.89	2.90	2.94
T SHIT #G	Days satisfied with target W.Q.	365	365	365	365
	Annual Average	1.92	1.91	1.91	1.93
Point #4	Worst Case	2.29	2.26	2.27	2.30
. 5	Days satisfied with target W.Q.	365	365	365	365

Results of Simulation by WASP Model

Comparison of COD in terms of each scenario

구 분		Original Plan	Alternative 1	Alternative 2	Alternative 3
	Annual Average	4.37	4.37	4.35	4.40
Point #1	Worst case	6.74	6.74	6.86	8.74
T SHIT # T	Day satisfied with target WQ	274	274	283	283
	Annual Average	4.41	4.41	4.44	4.43
Point #2	Worst case	9.22	9.23	9.71	10.65
	Day satisfied with target WQ	285	283	282	286
	Annual Average	4.46	4.46	4.47	4.47
Point #3	Worst Case	10.31	10.34	10.38	10.50
	Day satisfied with target WQ	276	274	273	273
	Annual Average	4.46	4.48	4.48	4.49
Point #4	Worst Case	8.50	8.54	8.55	8.66
. 5	Day satisfied with target WQ	284	282	282	281

Results of Simulation by WASP Model

Comparison of T-P in terms of each scenario

구 분		Original Plan	Alternative 1	Alternative 2	Alternative 3
	Annual Average	0.025	0.025	0.025	0.027
Point #1	Worst case	0.030	0.030	0.030	0.034
T OILL II	Days satisfied with target W.Q	357	357	358	334
	Annual Average	0.029	0.029	0.029	0.030
Point #2	Worst case	0.040	0.040	0.042	0.046
	Days satisfied with target W.Q	292	293	281	239
	Annual Average	0.029	0.029	0.029	0.029
Point #3	Worst case	0.044	0.044	0.044	0.045
T omt we	Days satisfied with target W.Q	283	285	286	273
	Annual Average	0.027	0.027	0.026	0.027
Point #4	Worst case	0.032	0.032	0.032	0.033
	Days satisfied with target W.Q	344	346	346	339

Results of Simulation by WASP Model

Comparison of Chl-a in terms of each scenario

구 분		Original Plan	Alternative 1	Alternative 2	Alternative 3
	Annual Average	4.2	4.2	4.2	4.5
지점 #1	Worst case	6.4	6.4	6.3	8.6
710 "1	Days satisfied with target W.Q	365	365	365	365
	Annual Average	4.5	4.5	4.6	4.6
지점 #2	Worst case	9.7	9.7	10.1	11.1
, =	Days satisfied with target W.Q	365	365	365	365
	Annual Average	4.8	4.8	4.8	4.8
지점 #3	Worst case	10.7	10.8	10.8	11.0
, , , , , , , , , , , , , , , , , , ,	Days satisfied with target W.Q	365	365	365	365
지점 #4	Annual Average	4.9	4.9	4.9	4.9
	Worst case	9.0	8.9	8.9	9.0
	Days satisfied with target W.Q	365	365	365	365

Summary of Flow Analysis and Water Quality for Water Circulation System

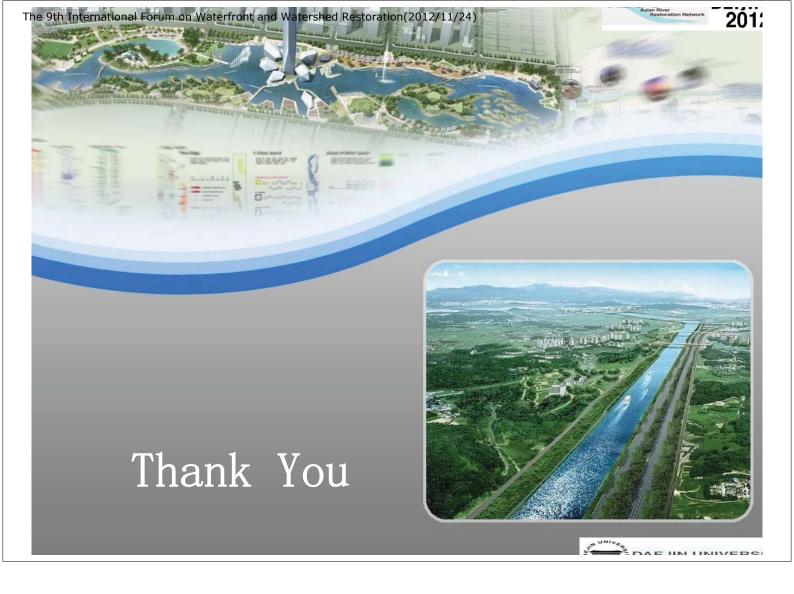
Flow Analysis

- 1. For the original plan, the circulation water discharges directly to near intake facility
 - Short cut phenomenon and bad mixing circulation
 - Vortex and dead zone appear in the North and South area
- 2. Among alternatives, the 3rd one, Separation of the Bed near the North Intake Structure, Improved Vortex and Mixing Condition in the lake circulation
- 3. In the review of dilution rate and detention time, the alternative 3 is superior to original plan.

Summary of Flow Analysis and Water Quality for Water Circulation System

Water Quality Analysis

- 1. For water quality control in terms of BOD, COD, SS, T-P, T-N and Chl-a, WASP7 model is used for the 2-D simulation
- 2. Point 2 and 3 show a little higher than point 1 and 4 because nonpoint pollutant transported from the waterways in the rainy season.
- 3. Annual Average water quality satisfies target water quality except rainy season in each plan



We are still Concerning;

- **1.Water Quality Control**
- 2. Water Quantity Control
- 3. Canal Operation Rules

Due to Rare References

